How to Expand Logarithms

 


How to Expand Logarithms

There are a few different techniques for expanding logarithms, depending on the form of the expression. Here are some common techniques:

1. Using the logarithmic identity: log(b^a) = a log(b)
If you have a logarithm of a power, you can use this identity to expand it. For example:

log(2^3) = 3 log(2)

2. Using the logarithmic product rule: log(a * b) = log(a) + log(b)
If you have a logarithm of a product, you can use this rule to expand it. For example:

log(4 * 5) = log(4) + log(5)

3. Using the logarithmic quotient rule: log(a / b) = log(a) - log(b)
If you have a logarithm of a quotient, you can use this rule to expand it. For example:

log(8 / 2) = log(8) - log(2)

4. Using the change of base formula: log(b, x) = log(a, x) / log(a, b)
If you have a logarithm with a different base than 10 or e, you can use this formula to change the base, which can sometimes make it easier to expand. For example:

log(2, 8) = log(10, 8) / log(10, 2) = 3 / log(10, 2)

5. Combining techniques: Sometimes, you need to use more than one technique to fully expand a logarithm. For example:

log(2^3 * 4 / 10) = log(2^3) + log(4) - log(10) = 3 log(2) + log(4) - log(10)

এই পোস্টটি পরিচিতদের সাথে শেয়ার করুন

পূর্বের পোস্ট দেখুন পরবর্তী পোস্ট দেখুন
এই পোস্টে এখনো কেউ মন্তব্য করে নি
মন্তব্য করতে এখানে ক্লিক করুন

আজকের আইটির নীতিমালা মেনে কমেন্ট করুন। প্রতিটি কমেন্ট রিভিউ করা হয়।

comment url